DATA STRUCTURES FOR PAGE READERS

Henry S. Baird
David J. Ittner

AT&T Bell Laboratories
600 Mountain Avenue, Room 2C-322
Murray Hill, NJ 07974-0636 USA
henry.baird @att.com

ABSTRACT

Software-engineering aspects of an experimental printed-page reader are
described, with emphasis on data-structure choices. This reader performs a wide
variety of tasks, including geometric layout analysis, symbol recognition, linguis-
tic contextual analysis, and user-selectable output encoding (e.g. Unicode). We
have implemented a single common data structure to support all these tasks. It
embraces iconic, geometric, probabilistic, and symbolic data, and can represent
the full physical document hierarchy as well as many partial stages of analysis.
We illustrate the evolution of this data structure, in the course of reading a page,
from purely iconic to purely symbolic form. The data structure can be snapshot in
machine- and OS-independent peripheral files. Careful agreement on its seman-
tics allows it to be used as a ‘blackboard’ in an elegant exploitation of generic
UNIX multi-processing. One partly unresolved issue is the best representation
for ambiguities spanning several levels of the document hierarchy.

1. Introduction

We have previously described algorithms and heuristics used in the component sub-
systems of our experimental machine-print page reader!?345 We have also demon-
strated its versatility ®7. In this paper we consider software-engineering features of
its design, with special attention to data structure (d/s) choices.

Looking back several years, it seems to us that much of the influence of our
research software on AT&T engineering practice has been due to certain d/s choices
which have had strongly positive effects on systems integration and evolution, allow-
ing our experimental code to be applied to new tasks with relative ease. They have
also supported easy portability and debugging. Most surprisingly perhaps, they
have recently permitted an elegant non-trivial exploitation of multi-processing.
Although these d/s choices were often made almost as an afterthought, at times
when our attention was focused on algorithm design, in retrospect they seem to have
been among the most beneficial. For this reason we feel that our experience may be
useful to researchers and engineers building similar systems.

Published in A. L. Spitz & A. Dengel (Eds.), Document Analysis Systems, World Scientific, Singapore, 1995. (Ex-

panded version from Proc., IAPR 1994 Workshop on Document Analysis Systems, Kaiserslautern, Germany, October 18-
20, 1994.)

www.manaraa.com

As our page reader evolved, we saw that certain characteristics of data structures
were particularly desirable. Some were obvious enough: for example, data types of
great variety are needed, including iconic (graphic), geometric, probabilistic, and
symbolic, to support algorithms adapted from many fields of research including
image processing, computational geometry, statistical decision theory, numerical
analysis, and computational linguistics, to name only a few. Quite early we decided
that all these data types should be integrated within a single d/s. Results to be com-
municated among component subsystems often represent intermediate incomplete
stages of analysis; thus we wanted the d/s to express, not only the full document
hierarchy (pages owning blocks owning text lines, words, characters, etc), but also
arbitrary partial subsets of the hierarchy.

To encourage other R&D colleagues to share results, we wanted to be able to
“snapshot” the d/s at any stage of analysis and communicate it to people working on
different machines and varieties of UNIX operating systems. Thus we felt the need
for the main memory d/s to have an isomorphic, machine- and OS-independent
peripheral file representation (i.e. the d/s should be persistent).

Of course, we also wanted our large software system to be (relatively) easy to
understand, extend, and maintain. We believe this is most likely to occur when a
system can be decomposed into modules having well-defined input and output condi-
tions, clear and unambiguous semantics, and no side-effects. Such a programming
discipline can be encouraged (although not ensured) by providing a single well-
documented d/s with clear semantics in which all the I/O conditions can be repre-
sented. For this reason, we strove to define a data structure that was — in our eyes
at least — simple, regular, and unvarying: simple in that it consists principally of
elementary data types with unambiguous semantics; regular in that it allows no
special cases or exceptions; and unvarying in that it offers no more than one way to
represent the same thing. In this we have been successful, in that our colleagues
have found it fairly easy to agree on the semantics of the d/s. In order further to dis-
courage undisciplined improvisation, we have provided a family of subroutines for
each record in the d/s, named and implemented regularly in an object oriented style
(written in C), supporting allocation and freeing, insertion and removal (within
lists), reading and writing to files, etc.

This strategy has encouraged the development of cleanly isolated functions which
can be executed in a variety of sequences and combined safely with functions devel-
oped by colleagues working elsewhere. As we have described in other papers, the
resulting system has been applied to physical segmentation and symbolic interpreta-
tion (recognition) of complex textual documents.

We are not aware of previously published discussion of page-reader data struc-
tures in our concrete sense. Architectural issues in page readers have been
addressed in 8919 more abstractly than we do. Isolation of functions and modular
programming were emphasized by the structured programming movement 1.

We describe the software engineering environment in Section 2. Sections 3 gives
the motivation for our representation of images, geometry, probabilities, and sym-
bolic codes. Section 4 introduces the physical document hierarchy, and Section 5
illustrates its evolution during analysis. Section 6 introduces two isomorphic repre-
sentations of the data structure, in main memory and in peripheral files. Section 7
gives a detailed discussion of their use in multi-processing. Sections 8 and 9 briefly
touch on the representation of ambiguity and graphical editing. Section 10

Data Structures for Page Readers

www.manaraa.com

summarizes the main results.

2. Application and Engineering Environments

The family of programs making up the page reader are all written in the C program-
ming language and run under various flavors of the UNIX[operating system. Our
main development machine is a Silicon Graphics Computer Systems Challenge XL
running IRIX Version 5, although the software automatically configures itself for
other machines and environments including SUN workstations running SunOS or
Solaris, PCs running variants of UNIX, and VAX hardware running Research UNIX.
We frequently need to ship document images, after various stages of processing,
among all these environments; obviously, a machine- and OS-independent periph-
eral data structure is critical.

We can accept document images in most of the major formats for bilevel images,
including TIFF, CCITT (Group 3 or Group 4), and Sunraster files, under various
compression schemes.

The system is not restricted to any symbol set or target language, therefore the
data structure must support the internal identification of symbols from any writing
system. Our laboratory is equipped to display, edit, and print the full Unicode!®
character set, but to preserve portability we adhere to a conservative policy during
program development, in which all program sources and tabular data needed to
build the system are written in 7-bit ASCII. Special needs of symbol recognition
precluded choosing Unicode as the internal code for symbol classes (e.g. ligatures do
not have code points), so we represent them by 7-bit ASCII strings — more on this
later. Encoding of text at any external interface, say to Unicode or JIS, is under
user control, specified in 7-bit ASCII tables.

3. Basic Data Types

In this section we give a brief introduction to our representations of four basic types
of data: images, geometry, probabilities, and symbol codes.

3.1. Images (Iconic Data)

Bilevel images in our system are treated as finite black foreground objects on an
infinite white background. Black and white are not treated symmetrically: only
black pixels are explicitly stored. As physical segmentation proceeds, black pixels
may be moved about and connected components may be cut into pieces. No black
pixel is ever discarded — it is assigned to some part of the hierarchical d/s — but, as
we will see, it may be duplicated in order to represent alternative segmentations.

The spatial sampling rate (digitizing resolution in pixels/inch (ppi)) is assumed to
be fixed within each page, but may vary arbitrarily from page to page; thus it is
stored in the page record. The sampling rate is generally assumed in our system to
be the same horizontally as vertically, but some algorithms are able to cope with dif-
ferent rates.

Within main memory, images are stored as horizontal runs of black pixels, which
are organized into 8-connected components at an early stage of processing. Opera-
tions performed on runs of pixels are generally more efficient, and hence run faster,
than if they operated on individual pixels. When images are written to peripheral

H.S. Baird and D.J. Ittner

www.manaraa.com

files, black connected components are encoded using the CCITT Group 4 encoding.
In practice, this produces a factor of 8 reduction in file size over encoding runs; the
computation to convert between encoding methods is modest.

3.2. Geometry

As skew and shear angles (of pages, blocks, and text lines) are detected, we often
correct the artwork immediately by pseudo-rotation and pseudo-shearing and then
store the angles in the d/s so that — in principle, never yet in practice — the trans-
formation can be inverted.

Subregions of the image — for example, text blocks — are defined implicitly by
the black pixels they contain. Thus, we do not need a mechanism for defining
regions geometrically — by, e.g., boundaries. This allows considerable freedom in
layout analysis, where in particular blocks of text are not restricted to those
bounded by orthogonal polygons.

Future extensions to grey-scale and color may force reconsideration of this policy.
We plan to investigate the use of ‘basis’ regions, defined either geometrically or as
bilevel images, which are attached to artwork to delimit the area over which the art-
work is defined.

Explicit orthogonal bounding boxes (shrink-wrapped about their black pixels) are
carried along with each major data item in the hierarchy. These are not, of course,
intended to define the contents of the region — it is permitted, for example, for boxes
of distinct regions to overlap — but rather as a rough indication of their extent.
Often, the bounding boxes alone are sufficient to support a critical computation: for
example, they are the primitive data item in block-finding.

3.3. Probabilities, Confidence, and Evidence

Several stages of analysis — notably classification — compute lists of alternative
interpretations labeled with approximate probabilities. Oftentimes these ‘probabili-
ties’ are very far from well-behaved from a theoretical point of view: they may, for
example, not always sum to one. This occurs in classification, to take one example,
because we wish them not only to exhibit good rank order (with the most probable
class highest), but also to possess a reliable reject threshold (so that values below
threshold indicate malformed images). Perhaps it would be better to call them,
generically, ‘confidence scores’. Whatever their properties and purposes, we gener-
ally represent them as real numbers in the range [0,1].

3.4. Symbolic Codes

Symbol classes need names. Unicode provides a unique code point for most char-
acters in the living languages, so it might seem a good choice. However, several con-
siderations have led us to reject Unicode as a coding convention within the page
reader, while we still provide full support for Unicode as an input and output encod-
ing selectable by users. First, Unicode does not provide code-points for ligatures (e.g.
’fi’) and other commonly merged combinations of characters which it is convenient to
treat within the reader as elementary shapes. Second, it is often an engineering
necessity to use distinct classes for dissimilar shape variants of character classes
(e.g. ’a’ and ’d’). Third, Unicode is not yet well supported as a text encoding — by

Data Structures for Page Readers

www.manaraa.com

editors, printers, displays, etc — in most software development environments, so
that requiring Unicode support is an obstacle to portability.

Thus we have chosen a conservative strategy of declaring class names to be short
7-bit printable ASCII strings. For example, "a" for ’a’, "ast" for '* (asterisk), "c-cd"
for ’c’ (c-cedilla). Shape variants are indicated by suffixes: e.g. "a.0" for ’a’ and "a.1"
for ’a’.

Users can achieve arbitrary input/output code translations to/from our internal
class names, to yield Unicode, JIS, and other encodings. This requires use of a 7-bit
printable ASCII translation table. Writing and referring to these tables is,
arguably, a bit awkward for naive users; but we do not know a better way that pro-

vides as much versatility.

4. The Physical Document Hierarchy

By the physical document hierarchy we mean the well-known nested decomposition
of document into pages, of each page into any number of blocks of text, blocks into
text-lines, and so forth as in this schematic:

docunent
page
bl ock
textline
wor d
char (symbol)
interpretation:
class + confidence score
i mage
connect ed conponent
run
pi xel

This shows the fullest elaboration of the hierarchy, when all of the parts of the docu-
ment have been extracted. Of course, this evolves through several stages of analy-
sis, as we shall see in the next section.

5. Evolution of the Data Structure

We now illustrate the evolution of the d/s at certain stages of analysis. For reasons
of space, we omit many stages and many details.

5.1. Page Skew and Shear Analysis

The input to this stage is a document consisting of one or more pages, each of
which contains a rectangular image, already expressed as a set of black connected
components; each page is also labeled with its box and the spatial sampling rate
(resolution). This is indicated schematically as follows:

doc
page + resn, box
i mage (set of black connected components)

The output is skew- and shear corrected and labeled with the angles:

H.S. Baird and D.J. Ittner

www.manaraa.com

doc
page + resn, box (new), skew, shear
i mge (skew- & shear-corrected)

Note that the box may have been updated, since it is now shrink-wrapped around
artwork that may have been moved.

5.2. Block Finding

The input to this stage is the output shown immediately above. The output d/s is
now enriched to contain text blocks:

doc
page + resn, box, skew, shear
i mage (photo, line-graphics)
bl ock + box
i mge

Note that the page may also own an image that is not contained in any block: in
practice, this is artwork that was set aside by the block-finding algorithm on the
grounds that it appeared to be either too large or too small to be text. This illus-
trates the policy that images that are not selected for inclusion in a subrecord (here,
a block) of a record (here, a page) remain owned directly by the original record.

5.3. Resegmentation of Symbols Within Words

We jump ahead to an interesting stage whose input contains pages, blocks, text
lines, words, and symbols which have been classified:

doc

page + resn, box, skew, shear
bl ock + box

textline + box

wor d

char
i mage
code + score

The output expresses the results of generating alternative segmentations of each
word into characters:

doc
page + resn, box, skew, shear
bl ock + box
textline + box
wor d
char
i mage
code + score
wor d (resegmentation alternatives)
char
i mge
code + score

Note that the alternative resegmentations are expressed by allowing a wor d record

Data Structures for Page Readers

www.manaraa.com

to own a set of one or more wor d records. Similar recursive representations are
allowed for text lines and blocks, but have not yet been exercised in practice.

5.4. Summary

These few examples illustrate several features of the data structure:

1) results of each stage of analysis are stored in the d/s so that, in principle, the
analysis can be inverted;

2) records can own not only their normal subrecords (e.g. pages owning blocks) but
also less completely analyzed parts (e.g. images), at the same time; and

3) records can recursively own records of their own type, permitting the expression
of alternative analyzes (e.g. segmentations).

6. Representations: Internal and External

We have implemented two isomorphic forms of the d/s. In main memory it is a
linked-list hierarchy served by a systematic and regular set of functions in an
object-oriented programming style (in C). Thus all functions see the same data
structure no matter what program they run in. In peripheral files the d/s is a byte-
stream, machine- and OS- independent, so that it can be written to and read from
files and UNIX pipes, moved around by ft p, uucp, etc. All programs therefore see
the same file structure no matter what shell script they run in.

We have provided a family of I/O functions which can read/write the entire hier-
archy, or optionally only selected parts of it, from/to files. This is quite general and
unconstraining, so that it can be used to ‘snapshot’ intermediate forms of the d/s.
These intermediate forms are often helpful in debugging, archiving interesting
results, or communicating results to workers at other locations. They have become
essential tools in collaborations between geographically separated teams, such as
research and development.

7. Exploitation of Multi-processing

One of the recent advances in computing hardware is symmetric multi-processing.
Document image analysis, and in particular symbol recognition, is an ideal applica-
tion for multi-processing through parallelization. We have extended our experimen-
tal page reader to take advantage of multi-processors while making minimal
demands of the underlying operating system or hardware.

A schematic diagram of a portion of the reader is shown in Figure 1. Geometric
layout analysis, including connected components analysis, skew- and shear-
correction, segmentation into text blocks, determination of text-line orientation, seg-
mentation into text lines, and finally into symbols, is performed first. As described
in Section 5, this processing results in a page owning possibly multiple blocks, which
own text lines, which in turn own symbols.

This incomplete hierarchy is passed to the next processing stage which performs
classification of symbols by shape, inference of text size and baseline, segmentation
of lines into words by spacing, and shape-directed resegmentation of symbols to han-
dle touching or broken characters. The hierarchy, now enriched with possibly multi-
ple segmentations of words (if appropriate for the language), and a short list of inter-
pretations for each symbol, is passed to the contextual analysis stage which exploits

H.S. Baird and D.J. Ittner

www.manaraa.com

punctuation rules, simple morphology, and spelling checks to prune alternatives.

Geometric Symbol
— Layout Recognition Contextual |-
Analysis (master) Analysis
Symbol Symbol
Recognition Recognition
(server) (server)

Figure 1. Schematic of a portion of our experimental page reader. Character
classification is distributed by the master to multiple instances of identical
software acting as servers. The same data structure is used within, and

exchanged between, all software units.

Typically the majority of the computation in this simple feed-forward pipeline is
spent in the symbol classification stage; our focus has therefore been to parallelize
symbol classification in order to improve overall throughput. As illustrated in Fig-
ure 1, the task of symbol classification is broken up by the “master” symbol recogni-
tion software unit and distributed to multiple instances of the same unit, now acting
as servers. Rather than defining a special set of messages to be passed between the
recognition processes, we exploit the same data structure used in the main pipeline.
This has greatly simplified the implementation, caused minimal change to our pre-
existing control flow, and has allowed us to concentrate on the more interesting
issues, such as the granularity of parallelization.

7.1. Implementation

Within our page reader the tasks of geometric layout analysis, symbol classifica-
tion, and contextual analysis is each performed by a separate UNIX process. For
these experiments, the classification process was enhanced to optionally duplicate
itself, setting up a pair of UNIX pipes for pairwise communication between the mas-
ter process and each server.

Symbol recognition naturally lends itself to parallelization at various levels. For
example, individual symbols can be distributed to servers for recognition by shape.
Another natural alternative is to send all symbols owned by a text line or block in a
single transaction. In general, the smaller the unit of work, the larger the number
of transactions required and the more demands made of communications (e.g. very
low latency) in order to keep the servers busy. The larger the unit of work, the fewer
the number of transactions, however, large transactions may also make it difficult to
keep all servers fully utilized. For example, if entire blocks are distributed to
servers, and one block is much larger than the others, all but one of the processors
will finish its work and go idle while the large block is completed (we always process

Data Structures for Page Readers

www.manaraa.com

a page to completion before going on to the next page).

We wanted to experiment with various strategies for parallelization without hav-
ing to greatly disturb our existing control flow and I/O conventions. Fortunately, the
existing data structure supported this application nicely. Regardless of the level of
distribution, the master process writes the appropriate partial hierarchy to the
server. For example, in order to send a text-line’s worth of symbols to the server,
only the necessary context, that is, a page owning a single text line of symbols, is
transmitted.

The work to be performed by the server is implicit in the data structure. Contin-
uing the text-line example, the server recognizes that none of the symbols in the text
line have been classified — so it does so. Then, the server recognizes that it cannot
segment the symbols into words since the necessary context is not available (we typ-
ically use statistics gathered over the entire block), so it writes the enriched hierar-
chy to its standard output. The master reads the partial hierarchy from the pipe,
breaks off its subtree containing the text line and attaches the new subtree. After
all text lines in a block have been processed in this way, the master gathers statis-
tics, segments text lines into words, and may distribute the text lines for a second
pass necessary to clean up broken or touching characters (we bound this work to
within a word, and therefore it cannot be done until words are found).

This logic, while seemingly complex, fits nicely into the existing control flow. A
few “hooks” provide a clean separation between control logic and the multi-
processing glue. During initialization a single routine is called which spawns dupli-
cate processes and opens the pipes. There is a single run-time option indicating how
many servers to spawn. This option is consumed by the master, although passing it
to a server would produce multi-level servers with no additional logic. Two calls
were added to the main logic at each level of the hierarchy; for example, at the block
level:

for (each block) {
i f (MP_bl ock(block)) continue;

... process this block locally ...

}
MP_end_bl ocks();

and at the text-line level:

for (each textline) {
if (MP_textline(textline) continue;

... process this text line locally ...

}
MP_end_textlines();

The multi-processing routines such as MP_bl ock() decide whether to send the
item to a server. If so, it returns 1 and the block is skipped by the master; other-
wise, it returns 0 and the block is further processed locally. That local processing
will lead to the second block of pseudo-code, at which time the individual text lines

H.S. Baird and D.J. Ittner

www.manaraa.com

of the block may be distributed to the servers. The routines such as
MP_end_bl ocks() waits until all blocks have been returned by servers. All trans-
action queuing and server management is hidden behind calls of this type; the
multi-processing routines total 730 lines of C code.

Because this implementation makes such few demands of the underlying operat-
ing system — a fork() and exec() system calls and some method of streaming
communications such as provided by UNIX pi pes — the software has been run
essentially unchanged on Silicon Graphics hardware with its System V flavor of
UNIX, a SUN Microsystems 670 server with SunOS, a SUN 1000 system running
Solaris, and even running on coprocessors with very little operating system support.

7.2. Experimental Results

The first 30 document images, in collating sequence, from the University of
Washington English Document Image Database I 12 were used as the test set (those
images containing no upright text were excluded). These pagers are an assortment
of technical journals and reports printed in a variety of page layouts. Geometric lay-
out analysis’ was performed, producing a number of variable size blocks, each own-
ing text lines which in turn own individual symbols for recognition.

I I I
1 2 3 4 5 6 7 8
Number of Servers

Figure 2. Scaling as recognition servers are added. Base time is elapsed time
using 0 servers. The diagonal dotted line shows perfect scaling. Lower
curve is when all parallelization done at the text-line level, middle curve
at the block level, and upper curve when a hybrid strategy is used.

The graph in Figure 2 shows the scaling achieved as servers are added. The base
time was taken to be the elapsed time required to process a page using O servers (i.e.
all processing done locally by the master). The scaling was then computed as the
base time divided by the elapsed-time taken for symbol classification using N
servers; each datum is an average over the 30 page test set. These experiments
were performed on a lightly-loaded Silicon Graphics Computer Systems Challenge
XL, with 8 150MHz R4.4k processors, running IRIX release 5.1. Similar results
were observed on the other platforms.

Data Structures for Page Readers

www.manaraa.com

The lower curve of the graph shows the scaling results when parallelization is
performed at the text-line level. There is a significant loss in efficiency even for one
server due to server idle time for each of the relatively large number of transactions
(only one transaction is outstanding to each server, creating some idle time after
each text line). Efficiency also degrades as we add servers; for example, only a factor
of 2 in throughput is achieved when using 4 servers, and only a factor of 2.7 when
using 8 servers. The worst case occurs when a page is decomposed into a large num-
ber of small blocks, say each owning one or two text lines. Since a block is processed
to completion before going to the next (a limitation of our simple control flow), sev-
eral of the servers go idle.

The dashed curve of Figure 2 shows the scaling results when parallelizing at the
block level only. Here the efficiency when going from 0 to 1 server is near 1; this
indicates the overhead in reading/writing the intermediate dim data structure is
minimal. Scaling begins to degrade drastically at about 4 servers. This decline in
efficiency can be seen when a page is decomposed such that 1 block is much larger
than the others. In this case all other blocks are processed and all but one of the
servers go idle while the large block is completed; as the number of processors
increase, the relative efficiency of each is reduced. We try to minimize this idle time
by sorting queued transactions descending on the number of symbols in the subtree.

The upper curve in the graph shows the scaling results when applying very sim-
ple methods of selecting the granularity based on the page decomposition. Specifi-
cally, any block which contains more than 1/N of the total number of symbols on the
page is decomposed and parallelized at the text-line level. Those blocks containing
fewer than 1/N are queued, descending on the number of symbols. These whole
blocks may then be used to fill idle time which would otherwise result as a long text
line contained in another block is completed. Scaling using this hybrid strategy is
much improved, particularly when more than 4 servers are used.

While the hybrid strategy produces scaling much improved over parallelizing at
the block or text-line levels, there is still much room for improvement (e.g. only a
scaling factor of 5.1 using 8 processors). Most of the remaining server idle time
comes at the end of the page as the last task is completed by one server while the
others are idle. Reducing this idle time further will likely require more complicated
scheduling algorithms. For example, we currently make a decision on the paral-
lelization level by examining the page up front, statically. A dynamic scheduling
algorithm which takes into account actual processing times would undoubtedly
make better use of the servers.

8. Representations of Ambiguity

A general-purpose data structure for document image analysis must provide a mech-
anism for representing ambiguity. We do not feel completely comfortable with our
current methods for this task. As mentioned previously, we may resegment artwork
owned by a word and carry multiple segmentations forward, each with the complete
artwork. There is also the general issue of implicit versus explicit representation of
segmentations. For example, the algorithms for resegmentation construct a lattice
in which segmentations are implicit, yet we must convert to the explicit representa-
tion of the document hierarchy. We typically limit the number of such segmenta-
tions, discarding potentially useful information.

H.S. Baird and D.J. Ittner

www.manaraa.com

9. Graphics

We have built an editor for dim-files with its graphics displayed using the X Window
System. This editor supports traversal of the document hierarchy at any level, while
examining alternatives, confidence scores, and labeling. By default, nodes are vis-
ited in reading order (to the level established by the page reader), although they can
be visited based on spatial properties, or by symbolic and logical labeling. Image
artwork is displayed in various contexts, for example, within its block, text line, and
word. The graphics are sufficiently general to cope with complex layouts, such as a
mixture of horizontal and vertical text lines on the same page.

10. Discussion

We have described a document-image data structure (d/s), that expresses the geo-
metric document image hierarchy (pages containing blocks of text-lines with words
of symbols). The d/s can express both full and partial (incomplete) stages of analy-
sis, and can express recursion (e.g. alternative resegmentations). It is complete, in
that image, geometry, probabilities, symbolic codes, logical labels, etc, are all
expressible in it. It is simple and regular in that there is no duplicated data, and no
support for more than one expression of the same thing. We have implemented two
isomorphic forms of the d/s. In main memory it is a linked-list hierarchy served by a
systematic and regular set of functions in an object-oriented programming style (in
C). Thus all functions see the same data structure no matter what program they
run in. In peripheral files the d/s is a byte-stream, machine- and OS-independent,
so that it can be moved around by ft p, uucp, etc. All programs see the same file
structure no matter what shell script they run in.

This d/s has proven helpful in both research and development. Prototyping, sys-
tems integration, and evolution have all been aided. It supports rapid prototyping
since it obviates the design of a special d/s from scratch each time. The simplicity of
the d/s encourages disciplined design, yielding self-contained tools with well-defined
semantics, and code that is easier to understand and maintain.

The result has been to allow the easy mixing and matching of tools in new combi-
nations, for rapid attacks on new problems. Developers have the freedom to experi-
ment with new tools in separately compiled programs, and later integrate them into
a single program, with no code changes inside functions. The d/s can serve as a kind
of ‘blackboard’ for passing intermediate results among tools, indicating, by its incom-
plete state, which action should occur next. This, in turn, allows an elegant and
general exploitation of UNIX multi-processing.

11. Acknowledgement

Stimulating conversations with Tin Kam Ho and Larry Spitz are much appreciated.
Greg Fabella wrote much of the multiprocessing control code and ran experiments
on the SUN hardware.

Data Structures for Page Readers

www.manaraa.com

12. References

[1] H. S. Baird, Global-to-Local Layout Analysis, in R. Mohr, T. Pavlidis, & A. San-
feliu (Eds.), Structural Pattern Analysis, World Scientific, Singapore, 1990, pp.
181-196.

[2] H. S. Baird, S. E. Jones and S. J. Fortune, Image Segmentation by Shape-
Directed Covers, Proc., IAPR 10th Int’l Conf. on Pattern Recognition, Atlantic
City, NdJ, 17-21 June, 1990, vol 1, pp. 820-825.

[3] H. S. Baird and R. Fossey, A 100-Font Classifier, Proc., 1st Int’l Conf. on Docu-
ment Analysis and Recognition (ICDAR’91), Saint-Malo, France, 30 September
- 2 October, 1991, pp. 332-340.

[4] H. S. Baird, Background Structure in Document Images, in H, Bunke (Ed.),
Advances in Structural and Syntactic Pattern Recognition, World Scientific,
Singapore, 1992, pp. 253-269.

[5] D. d. Ittner, Automatic Inference of Textline Orientation, 2nd Annual Sympo-
sium on Document Analysis and Information Retrieval, Las Vegas, Nevada,
April, 1993.

[6] H. S. Baird, Anatomy of a Versatile Page Reader, IEEE Proceedings, July,
1992.

[71 D. d. Ittner and H. S. Baird, Language-Free Layout Analysis, Proceedings, 2nd
Int'l Conf. on Document Analysis and Recognition, Tsukuba Science City,
Japan, October 20-22, 1993, pp. 336-340.

[8] A. Dengel, ANASTASIL: A System for Low-Level and High-Level Geometric
Analysis of Printed Documents, in H. Baird, H. Bunke, & K. Yamamoto (Eds.),
Structural Document Image Analysis, Springer-Verlag, New York, 1992, pp.
70-98.

[9] J. Kreich, A. Luhn, & G. Maderlechner, An Experimental Environment for
Model-Based Document Analysis, Proc., 1st Int’l Conf. on Document Analysis
and Recognition, Saint-Malo, France, September 30-October 2, 1991, pp. 50-58.

[10] Y. Chenevoy & A. Belaid, Hypothesis Management for Structured Document
Recognition, Proc., 1st Int’l Conf. on Document Analysis and Recognition
(ICDAR’91), St.-Malo, France, 30 September - 2 October, 1991, pp. 121-129.

[11] D. L. Parnas, On the Criteria to Be Used in Decomposing Systems into Modules,
in E. N. Yourdan (Ed.), Classics in Software Engineering, Yourdan Press, New
York, 1979, pp. 141-150.

[12] I. T. Phillip, S. Chen, J. Ha, and R. M. Haralick, English Document Database
Design and Implementation Methodology, Proceedings, 2nd Annual Symposium
on Document Analysis and Information Retrieval, Caesar’s Palace Hotel, Las
Vegas, Nevada, April 26-28, 1993, pp. 65-104.

[13] The Unicode Consortium, The Unicode Standard, Vols 1 & 2, Addison-Wedey, Read-
ing, Massachusetts, 1992.

H.S. Baird and D.J. Ittner

www.manaraa.com

