
www.manaraa.com

DATA STRUCTURES FOR PAGE READERS

Henry S. Baird

David J. Ittner

AT&T Bel l Laboratories
600 Mountai n Ave nue, Room 2C-322

Murr ay Hi ll, NJ 07974 -0636 USA
henr y.baird @ att.com

ABSTRACT
Software-en gineering aspec ts of an exper imental printe d-p age reader are
desc ribed, with emphasis on data-stru cture choices . This reader perf orms a wide
variety of tasks, includ ing geometr ic layout analysis, symbol recogn ition, linguis-
tic conte xtual analysis, and user -selec table outp ut encod ing (e.g. Unicod e). We
have implement ed a single common data stru cture to sup port all thes e tasks. It
embraces iconic, geometr ic, pro babilistic, and symbolic data, and can repr esent
the full physic al docu ment hierarch y as well as many partial stages of analysis.
We illustrate the evolutio n of this data stru cture, in the cour se of reading a page,
from pure ly iconic to pur ely symbolic form. The data struc ture can be snaps hot in
machine- and OS-indep enden t perip heral files. Careful agreement on its seman-
tics allows it to be used as a ‘blackboard’ in an elegant exploitation of generic
UNIX multi-pr ocess ing. One partly unres olved issue is the best repr esent ation
for ambiguities spannin g several levels of the docume nt hierarch y.

1. Introduction

We have previously described algorithms and heuristic s used in the component sub-
systems of our experimental machine-pr int page reader1,2,3,4,5. We have also demon-
strated its versatility 6,7. In this paper we consider software- engineering features of
its design, with special attention to data struc ture (d/s) choic es.

Looking back several years, it seems to us that much of the influenc e of our
research software on AT&T engineering practic e has been due to certain d/s choices
which have had strongly positive effec ts on systems integration and evolution, allow-
ing our experimental code to be applied to new tasks with relative ease. They have
also supported easy portability and debugging. Most surpr isingly perhaps, they
have rec ently permitted an elegant non-tr ivial exploitation of multi-proc essing.
Although these d/s choices were often made almost as an afterthough t, at times
when our attention was focus ed on algorithm design, in retrospec t they seem to have
been among the most beneficial. For this reason we feel that our experience may be
useful to researc hers and engineers building similar systems.

Publi shed in A. L. Spitz & A. Dengel (Eds.), Document Analysis Systems, World Scientif ic, Singapore, 1995. (Ex-
panded version from Proc., IAPR 1994 Workshop on Document Analysis Systems, Kaisersla utern, Germa ny, October 18-
20, 1994.)

www.manaraa.com

As our page reader evolved, we saw that certain charac teristics of data struc tures
were particularly desirable. Some were obvious enough: for example, data types of
great variety are needed, including iconic (gr aphic), geometric, probabilistic, and
symbolic, to support algorithms adapted fr om many fields of researc h including
image processin g, computational geometry, statistical decision theory, numeric al
analysis, and computational linguistics, to name only a few. Quite early we decided
that all these data types should be integrated within a single d/s. Results to be com-
municated among component subsystems often represent intermediate incomplete
stages of analysis; thus we wanted the d/s to express, not only the full document
hierarch y (pages owning blocks owning text lines, words, character s, etc), but also
arbitrary partial subsets of the hierarc hy.

To encour age other R&D colleagues to share results, we wanted to be able to
‘‘snapshot’’ the d/s at any stage of analysis and communicate it to people working on
differ ent machines and varieties of UNIX operating systems. Thus we felt the need
for the main memory d/s to have an isomorphic, machine- and OS- independent
peripheral file represen tation (i.e. the d/s should be pers is tent).

Of cours e, we also wanted our large software system to be (relatively) easy to
understand, extend, and maintain. We believe this is most likely to occu r when a
system can be decomposed into modules having well-defined input and output condi-
tions, clear and unambiguous semantics, and no side-eff ects. Such a progr amming
discipline can be encour aged (although not ensured) by providing a single well-
documented d/s with clear semantics in which all the I/O conditions can be repre-
sented. For this reason, we strove to define a data struc ture that was — in our eyes
at least — simple, regular, and unvary ing: simpl e in that it consists princ ipally of
elementary data types with unambiguous semantics; regu lar in that it allows no
special cases or exceptions; and unvaryi ng in that it off ers no more than one way to
represent the same thing. In this we have been succ essful, in that our colleagues
have foun d it fairly easy to agree on the semantics of the d/s. In order fur ther to dis-
courage undisciplined improvisation, we have provided a family of subroutines for
each recor d in the d/s, named and implemented regularly in an object oriented style
(written in C), supporting allocation and fr eeing, insertion and removal (within
lists), reading and writing to files, etc.

This strategy has encour aged the development of cleanly isolated func tions which
can be executed in a variety of sequences and combined safely with func tions devel-
oped by colleagues working elsewhere. As we have descr ibed in other papers, the
resulting system has been applied to physical segmentation and symbolic interpr eta-
tion (rec ognition) of complex textual documents.

We are not aware of previously published discussion of page-reader data struc -
tures in our conc rete sense. Arch itectural issues in page readers have been
addressed in 8,9,10, more abstractly than we do. Isolation of func tions and modular
programming were emphasized by the struc tured programming movement 11.

We descr ibe the software engineering environment in Section 2. Sections 3 gives
the motivation for our represen tation of images, geometry, probabilities, and sym-
bolic codes. Section 4 introduc es the physical document hierarc hy, and Section 5
illustrates its evolution during analysis. Section 6 introduc es two isomorphic repre-
sentations of the data struc ture, in main memory and in peripheral files. Section 7
gives a detailed discussion of their use in multi-pr ocessing. Sections 8 and 9 briefly
touch on the representation of ambiguity and graphical editing. Section 10

Data Structure s for Page Reade rs

www.manaraa.com

summarizes the main results.

2. Appli cation and Engineering Environments

The family of progr ams making up the page reader are all written in the C progr am-
ming language and run under various flavors of the UNIX operating system. Our
main development machine is a Silicon Graphics Computer Systems Challenge XL
runnin g IRIX Version 5, although the software automatically conf igures itself for
other machines and environments including SUN workstations runn ing SunOS or
Solaris, PCs runn ing variants of UNIX , and VAX hardware runn ing Research UNIX .
We fr equently need to ship document images, after various stages of processin g,
among all these environments; obviously, a machine- and OS- independent periph-
eral data struc ture is cr itical.

We can accept document images in most of the major formats for bilevel images,
including TIFF, CCITT (Grou p 3 or Group 4), and Sunr aster files, under various
compression schemes.

The system is not restric ted to any symbol set or target language, theref ore the
data struc ture must support the internal identification of symbols fr om any writing
system. Our laboratory is equipped to display, edit, and print the full Unicode13

character set, but to preserve portability we adhere to a conserv ative policy during
program development, in which all progr am sourc es and tabular data needed to
build the system are written in 7-bit ASCII. Special needs of symbol rec ognition
precluded choosing Unicode as the internal code for symbol classes (e.g. ligatures do
not have code points), so we represent them by 7-bit ASCII strings — more on this
later. Encoding of text at any external interf ace, say to Unicode or JIS, is under
user contr ol, specif ied in 7-bit ASCII tables.

3. Basic Data Types

In this section we give a brief introduc tion to our repr esentations of four basic types
of data: images, geometry, probabilities, and symbol codes.

3.1. Images (Ic onic Data)

Bilevel images in our system are treated as finite black for eground objects on an
infinite white background. Black and white are not treated symmetrically: only
black pixels are explicitly stored. As physical segmentation proceeds, black pixels
may be moved about and connec ted components may be cut into pieces. No black
pixel is ever discarded — it is assigned to some part of the hierarc hical d/s — but, as
we will see, it may be duplicated in order to represent alternative segmentations.

The spatial sampling rate (digitizing resolution in pixels/inch (ppi)) is assumed to
be fixed within each page, but may vary arbitrarily fr om page to page; thus it is
stored in the page recor d. The sampling rate is generally assumed in our system to
be the same horizontally as vertically, but some algorithms are able to cope with dif-
ferent rates.

Within main memory, images are stored as horizontal runs of black pixels, which
are organized into 8-conn ected components at an early stage of processing. Opera-
tions perfor med on runs of pixels are generally more eff icient, and hence run faster,
than if they operated on individual pixels. When images are written to peripheral

H.S. Bair d and D.J. Ittner

www.manaraa.com

files, black connec ted components are encoded using the CCITT Group 4 encoding.
In practic e, this produc es a factor of 8 reduc tion in file size over encoding runs; the
computation to convert between encoding methods is modest.

3.2. Geometry

As skew and shear angles (of pages, blocks, and text lines) are detected, we often
corr ect the artwork immediately by pseudo-r otation and pseudo-sh earing and then
store the angles in the d/s so that — in principle, never yet in practice — the trans-
formation can be inverted.

Subregions of the image — for example, text blocks — are defined implicitly by
the black pixels they contain. Thus, we do not need a mechanism for defining
regions geometrically — by, e.g., boundaries. This allows considerable freedom in
layout analysis, where in particular blocks of text are not restr icted to those
bounded by orthogonal polygons.

Future extensions to grey- scale and color may forc e recon sideration of this policy.
We plan to investigate the use of ‘basis’ regions, defined either geometrically or as
bilevel images, which are attached to artwork to delimit the area over which the art-
work is defined.

Explicit orthogonal bounding boxes (shr ink-wr apped about their black pixels) are
carried along with each major data item in the hierarc hy. These are not, of cour se,
intended to define the contents of the region — it is permitted, for example, for boxes
of distinct regions to overlap — but rather as a rough indication of their extent.
Often, the bounding boxes alone are suff icient to support a critic al computation: for
example, they are the primitive data item in block-f inding.

3.3. Probabiliti es, Confi denc e, and Evide nce

Several stages of analysis — notably classific ation — compute lists of alternative
interpretations labeled with approximate probabilities. Oftentimes these ‘probabili-
ties’ are very far fr om well-behaved from a theoretical point of view: they may, for
example, not always sum to one. This occu rs in classific ation, to take one example,
because we wish them not only to exhibit good rank order (with the most probable
class highest) , but also to possess a reliable reject threshold (so that values below
threshold indicate malformed images). Perhaps it would be better to call them,
generically, ‘conf idence scores’. Whatever their properties and purposes, we gener-
ally represent them as real numbers in the range [0,1].

3.4. Symbolic Codes

Symbol classes need names. Unic ode provides a unique code point for most char-
acters in the living languages, so it might seem a good choice. However, several con-
siderations have led us to reject Unicode as a coding convention within the page
reade r, while we still provide full support for Unic ode as an input and output encod-
ing selectable by users. First, Unicode does not provide code-points for ligatures (e.g.
’fi’) and other commonly merged combinations of char acters which it is convenient to
treat within the reader as elementary shapes. Second, it is often an engineering
necessity to use distinct classes for dissimilar shape vari ants of character classes
(e.g. ’a’ and ’a’). Third, Unicode is not yet well supported as a text encoding — by

Data Structure s for Page Reade rs

www.manaraa.com

editors, printers , displays, etc — in most software development environments, so
that requiring Unicode support is an obstacle to portability.

Thus we have chosen a conserv ative strategy of declaring class names to be short
7-bit printable ASCII strings. For example, "a" for ’a’, "ast" for ’*’ (asterisk) , "c-c d"
for ’c’ (c- cedilla). Shape variants are indicated by suff ixes: e.g. "a.0" for ’a’ and "a.1"
for ’a’.

Users can achieve arbitrary input/output code translations to/from our internal
class names, to yield Unicode, JIS, and other encodings. This requires use of a 7-bit
printable ASCII translation table. Writing and refer ring to these tables is,
arguably, a bit awkward for naive users; but we do not know a better way that pro-
vides as much versatility.

4. The Physical Document Hierarchy

By the physical document hierarc hy we mean the well-known nested decomposition
of document into pages, of each page into any number of blocks of text, blocks into
text-lines, and so forth as in this schematic:

docu ment
page
bloc k
text line
word
char (symbol)
inte rpre tati on:
clas s + conf iden ce scor e
imag e:
conn ecte d comp onen t
run
pixe l

This shows the fullest elaboration of the hierarc hy, when all of the parts of the docu-
ment have been extracted. Of course, this evolves through several stages of analy-
sis, as we shall see in the next section.

5. Evolution of the Data Structure

We now illustrate the evolution of the d/s at certain stages of analysis. For reasons
of space, we omit many stages and many details.

5.1. Page Skew and Shear Anal ysis

The input to this stage is a document consisting of one or more pages, each of
which contains a rectangu lar image, already expressed as a set of black connec ted
components; each page is also labeled with its box and the spatial sampling rate
(resolution) . This is indicated schematically as follows:

doc
page + resn , box
imag e (set of black conne cted compo nents)

The output is skew- and shear corr ected and labeled with the angles:

H.S. Bair d and D.J. Ittner

www.manaraa.com

doc
page + resn , box (new), skew , shea r
imag e (skew- & shea r-cor recte d)

Note that the box may have been updated, since it is now shrink- wrapped around
artwork that may have been moved.

5.2. Block Findi ng

The input to this stage is the output shown immediately above. The output d/s is
now enrich ed to contain text blocks:

doc
page + resn , box, skew , shea r
imag e (phot o, line-gr aph ics)
bloc k + box
imag e

Note that the page may also own an image that is not contained in any block: in
practice, this is artwork that was set aside by the block-f inding algorithm on the
grounds that it appeared to be either too large or too small to be text. This illus-
trates the policy that images that are not selected for inclusion in a subrecor d (her e,
a block) of a recor d (her e, a page) remain owned directly by the original recor d.

5.3. Res egmen tation of Symbols Withi n Words

We jump ahead to an interesting stage whose input contains pages, blocks, text
lines, words, and symbols which have been classified:

doc
page + resn , box, skew , shea r
bloc k + box
text line + box
word
char
imag e
code + scor e

The output expresses the results of generating alternative segmentations of each
word into char acters:

doc
page + resn , box, skew , shea r
bloc k + box
text line + box
word
char
imag e
code + scor e
word (resegme ntat ion alte rnat ives)
char
imag e
code + scor e

Note that the alternative resegmentations are expressed by allowing a wor d recor d

Data Structure s for Page Reade rs

www.manaraa.com

to own a set of one or more wor d recor ds. Similar recu rsive representations are
allowed for text lines and blocks, but have not yet been exercised in practice.

5.4. Summary

These few examples illustrate several features of the data struc ture:
1) results of each stage of analysis are stored in the d/s so that, in princ iple, the

analysis can be inverted;
2) recor ds can own not only their normal subrecor ds (e.g. pages owning blocks) but

also less completely analyzed parts (e.g. images), at the same time; and
3) recor ds can rec ursively own recor ds of their own type, permitting the expression

of alternative analyzes (e.g. segmentations).

6. Representations: Internal and External

We have implemented two isomorphic for ms of the d/s. In main memory it is a
linked-list hierarch y served by a systematic and regular set of func tions in an
object-oriented programming style (in C). Thus all fun ctions see the same data
struc ture no matter what program they run in. In peripher al files the d/s is a byte-
stream, machine- and OS- independent, so that it can be written to and read from
files and UNIX pipes, moved around by ftp, uuc p, etc. All programs theref ore see
the same file struc ture no matter what shell script they run in.

We have provided a family of I/O fun ctions which can read/write the entire hier-
archy, or optionally only selected parts of it, fr om/to files. This is quite general and
unconstr aining, so that it can be used to ‘snapshot’ intermediate forms of the d/s.
These intermediate forms are often helpful in debugging, archivin g interesting
results, or communicating results to workers at other locations. They have become
essential tools in collaborations between geographically separated teams, such as
research and development.

7. Exploitation of Multi-processing

One of the recen t advances in computing hardware is symmetric multi-proc essing.
Document image analysis, and in particular symbol rec ognition, is an ideal applica-
tion for multi-proc essing through parallelization. We have extended our experimen-
tal page reader to take advantage of multi-proc essors while making minimal
demands of the underlyin g operating system or hardware.

A schematic diagram of a portion of the reader is shown in Figure 1. Geometric
layout analysis, including connec ted components analysis, skew- and shear-
corr ection, segmentation into text blocks, determination of text-line orientation, seg-
mentation into text lines, and finally into symbols, is perfor med fir st. As descr ibed
in Section 5, this proc essing results in a page owning possibly multiple blocks, which
own text lines, which in turn own symbols.

This incomplete hierarc hy is passed to the next processing stage which perfor ms
classification of symbols by shape, infer ence of text size and baseline, segmentation
of lines into words by spacing, and shape-direc ted resegmentation of symbols to han-
dle touching or broken char acters. The hierarc hy, now enrich ed with possibly multi-
ple segmentations of words (if appropriate for the language), and a short list of inter-
pretations for each symbol, is passed to the contextual analysis stage which exploits

H.S. Bair d and D.J. Ittner

www.manaraa.com

punctuation rules, simple morphology, and spelling chec ks to prune alternatives.

Geometric
Layout

Analysis

Symbol

Symbol
Recogn ition

(master)
Context ual

Analysis

. . . . Recogn ition
Symbol

(serve r) (server)
Recogn ition

Figure 1. Schematic of a portion of our experime ntal page reader. Character
classification is distributed by the maste r to multiple instances of identical

software acting as serve rs. The same data structure is used within, and
exchange d betwee n, all software units.

Typically the majority of the computation in this simple feed-f orward pipeline is
spent in the symbol classific ation stage; our foc us has therefor e been to parallelize
symbol classification in order to improve overall throughpu t. As illustrated in Fig-
ure 1, the task of symbol classification is broken up by the ‘‘master’’ symbol recogn i-
tion software unit and distributed to multiple instances of the same unit, now acting
as servers. Rather than defining a special set of messages to be passed between the
recognition processes, we exploit the same data struc ture used in the main pipeline.
This has greatly simplified the implementation, caused minimal change to our pre-
existing contr ol flow, and has allowed us to concen trate on the more interesting
issues, such as the granular ity of parallelization.

7.1. Impleme ntation

Within our page reader the tasks of geometric layout analysis, symbol classific a-
tion, and contextual analysis is each perfor med by a separate UNIX proc ess. For
these experiments, the classific ation process was enhanced to optionally duplicate
itself, setting up a pair of UNIX pipes for pairwise communication between the mas-
ter proc ess and each server .

Symbol recogn ition naturally lends itself to parallelization at various levels. For
example, individual symbols can be distributed to servers for recogn ition by shape.
Another natural alternative is to send all symbols owned by a text line or block in a
single transaction. In general, the smaller the unit of work, the larger the number
of transactions required and the more demands made of communications (e.g. very
low latency) in order to keep the servers busy. The larger the unit of work, the fewer
the number of transactions, however, large transactions may also make it diff icult to
keep all servers fully utilized. For example, if entire blocks are distributed to
servers, and one block is much larger than the others, all but one of the processor s
will finish its work and go idle while the large block is completed (we always process

Data Structure s for Page Reade rs

www.manaraa.com

a page to completion before going on to the next page).
We wanted to experiment with various strategies for parallelization without hav-

ing to greatly disturb our existing contr ol flow and I/O conven tions. Fortunately, the
existing data struc ture supported this application nicely. Regardless of the level of
distribution, the master process writes the appropriate partial hierarc hy to the
server. For example, in order to send a text-line’s worth of symbols to the server,
only the necessary context, that is, a page owning a single text line of symbols, is
transmitted.

The work to be perfor med by the server is implicit in the data struc ture. Contin-
uing the text-line example, the server rec ognizes that none of the symbols in the text
line have been classified — so it does so. Then, the server recogn izes that it cannot
segment the symbols into words since the necessary context is not available (we typ-
ically use statistics gathered over the entire block), so it writes the enrich ed hierar-
chy to its standard output. The master reads the partial hierarc hy fr om the pipe,
breaks off its subtree containing the text line and attaches the new subtree. After
all text lines in a block have been proc essed in this way, the master gathers statis-
tics, segments text lines into words, and may distribute the text lines for a second
pass necessary to clean up broken or touching character s (we bound this work to
within a word, and theref ore it cannot be done until words are found) .

This logic, while seemingly complex, fits nicely into the existing contr ol flow. A
few ‘‘hooks’’ provide a clean separation between contr ol logic and the multi-
processing glue. During initialization a single routine is called which spawns dupli-
cate processes and opens the pipes. There is a single run -time option indicating how
many server s to spawn. This option is consumed by the master, although passing it
to a server would produce multi-level servers with no additional logic. Two calls
were added to the main logic at each level of the hierarc hy; for example, at the block
level:

for (each block) {
if (MP_ bloc k(block)) cont inue ;

... proc ess this block loca lly ...

}
MP_e nd_b lock s();

and at the text-line level:

for (each text line) {
if (MP_ text line (textl ine) cont inue ;

... proc ess this text line local ly ...

}
MP_e nd_t extl ines ();

The multi-proc essing routines such as MP_ blo ck() decide whether to send the
item to a server. If so, it return s 1 and the block is skipped by the master; other-
wise, it retur ns 0 and the block is fur ther processed locally. That local processing
will lead to the second block of pseudo-c ode, at which time the individual text lines

H.S. Bair d and D.J. Ittner

www.manaraa.com

of the block may be distributed to the servers. The routines such as
MP_ end _bl oc ks() waits until all blocks have been return ed by server s. All trans-
action queuing and server management is hidden behind calls of this type; the
multi-proc essing routines total 730 lines of C code.

Because this implementation makes such few demands of the underly ing operat-
ing system — a for k() and exe c() system calls and some method of streaming
communications such as provided by UNIX pip es — the software has been run
essentially unch anged on Silicon Graphics hardware with its System V flavor of
UNIX, a SUN Micr osystems 670 server with SunOS , a SUN 1000 system runn ing
Solaris, and even runnin g on copr ocessors with very little operating system support.

7.2. Experi mental Res ults

The first 30 document images, in collating sequence, fr om the University of
Washington English Document Image Database I 12 were used as the test set (those
images containing no upright text were excluded) . These pagers are an assortment
of technic al journals and reports printed in a variety of page layouts. Geometric lay-
out analysis7 was perfor med, producin g a number of variable size blocks, each own-
ing text lines which in turn own individual symbols for recogn ition.

. .1

. .2

. .3

. .4

. .5

. .6

. .7

. .8

1 2 3 4 5 6 7 8
Number of Servers

Scaling

. .

. .
. .

. .
. .

. .
. .

. .
. .

..
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

Figure 2. Scaling as recognition serve rs are added. Base time is ela psed time
using 0 serve rs. The diagonal dotted line shows perfect scaling. Lowe r

curve is when all paralle lization done at the text-l ine lev el, middle curve
at the block leve l, and upper curve when a hybrid strateg y is used.

The graph in Figure 2 shows the scaling achieved as server s are added. The base
time was taken to be the elapsed time required to process a page using 0 servers (i.e.
all processin g done locally by the master). The scaling was then computed as the
base time divided by the elapsed-time taken for symbol classification using N
servers; each datum is an average over the 30 page test set. These experiments
were perfor med on a lightly-loaded Silicon Graphics Computer Systems Challenge
XL, with 8 150MHz R4.4k processor s, run ning IRIX release 5.1. Similar results
were observed on the other platforms.

Data Structure s for Page Reade rs

www.manaraa.com

The lower cur ve of the graph shows the scaling results when parallelization is
perfor med at the text-line level. There is a signific ant loss in effic iency even for one
server due to server idle time for each of the relatively large number of transactions
(only one transaction is outstanding to each server , creating some idle time after
each text line). Eff iciency also degrades as we add servers ; for example, only a factor
of 2 in throug hput is achieved when using 4 servers, and only a factor of 2.7 when
using 8 server s. The worst case occur s when a page is decomposed into a large num-
ber of small blocks, say each owning one or two text lines. Sinc e a block is processed
to completion before going to the next (a limitation of our simple contr ol flow), sev-
eral of the servers go idle.

The dashed curv e of Figure 2 shows the scaling results when parallelizing at the
block level only. Here the effic iency when going fr om 0 to 1 server is near 1; this
indicates the overhead in reading/writing the intermediate dim data struc ture is
minimal. Scaling begins to degrade drastically at about 4 servers. This decline in
effic iency can be seen when a page is decomposed such that 1 block is much larger
than the others. In this case all other blocks are processed and all but one of the
servers go idle while the large block is completed; as the number of processor s
increase, the relative eff iciency of each is reduc ed. We try to minimize this idle time
by sorting queued transactions descending on the number of symbols in the subtree.

The upper cur ve in the graph shows the scaling results when applying very sim-
ple methods of selecting the granular ity based on the page decomposition. Specif i-
cally, any block which contains more than 1/N of the total number of symbols on the
page is decomposed and parallelized at the text-line level. Those blocks containing
fewer than 1/N are queued, descending on the number of symbols. These whole
blocks may then be used to fill idle time which would otherwise result as a long text
line contained in another block is completed. Scaling using this hybrid strategy is
much improved, particularly when more than 4 servers are used.

While the hybrid strategy produces scaling much improved over parallelizing at
the block or text-line levels, there is still much room for improvement (e.g. only a
scaling factor of 5.1 using 8 processor s). Most of the remaining server idle time
comes at the end of the page as the last task is completed by one server while the
others are idle. Reducin g this idle time fur ther will likely require more complicated
scheduling algorithms. For example, we cur rently make a decision on the paral-
lelization level by examining the page up fr ont, statically. A dynamic scheduling
algorithm which takes into accoun t actual processing times would undoubtedly
make better use of the server s.

8. Representations of Ambiguity

A general-pur pose data struc ture for document image analysis must provide a mech-
anism for represen ting ambiguity. We do not feel completely comfor table with our
curr ent methods for this task. As mentioned previously, we may resegment artwork
owned by a word and carr y multiple segmentations forwar d, each with the complete
artwork. There is also the general issue of implicit versus explicit represen tation of
segmentations. For example, the algorithms for resegmentation constru ct a lattice
in which segmentations are implicit, yet we must convert to the explicit representa-
tion of the document hierarc hy. We typically limit the number of such segmenta-
tions, discarding potentially useful infor mation.

H.S. Bair d and D.J. Ittner

www.manaraa.com

9. Graphics

We have built an editor for dim-files with its graphics displayed using the X Window
System. This editor supports traversal of the document hierarc hy at any level, while
examining alternatives, conf idence scor es, and labeling. By default, nodes are vis-
ited in reading order (to the level established by the page reader) , although they can
be visited based on spatial properties, or by symbolic and logical labeling. Image
artwork is displayed in various contexts, for example, within its block, text line, and
word. The graphics are suff iciently general to cope with complex layouts, such as a
mixture of horizontal and vertical text lines on the same page.

10. Discussion

We have descr ibed a document-image data struc ture (d/s), that expresses the geo-
metric document image hierarc hy (pages containing blocks of text-lines with words
of symbols). The d/s can express both full and partial (inc omplete) stages of analy-
sis, and can express recu rsion (e.g. alternative resegmentations). It is complete, in
that image, geometry, probabilities, symbolic codes, logical labels, etc, are all
expressible in it. It is simple and regular in that there is no duplicated data, and no
support for more than one expression of the same thing. We have implemented two
isomorphic for ms of the d/s. In main memory it is a linked-list hierarc hy served by a
systematic and regular set of func tions in an object-oriented progr amming style (in
C). Thus all func tions see the same data struc ture no matter what progr am they
run in. In peripheral files the d/s is a byte-stream, machine- and OS-independent,
so that it can be moved around by ftp, uuc p, etc. All programs see the same file
struc ture no matter what shell script they run in.

This d/s has proven helpful in both researc h and development. Prototyping, sys-
tems integration, and evolution have all been aided. It supports rapid prototyping
since it obviates the design of a special d/s fr om scr atch each time. The simplicity of
the d/s encour ages disciplined design, yielding self-c ontained tools with well-defined
semantics, and code that is easier to understand and maintain.

The result has been to allow the easy mixing and matching of tools in new combi-
nations, for rapid attacks on new problems. Developers have the fr eedom to experi-
ment with new tools in separately compiled programs, and later integrate them into
a single progr am, with no code changes inside func tions. The d/s can serve as a kind
of ‘blackboard’ for passing intermediate results among tools, indicating, by its incom-
plete state, which action should occu r next. This, in turn, allows an elegant and
general exploitation of UNIX multi-proc essing.

11. Acknowled gement

Stimulating conver sations with Tin Kam Ho and Larry Spitz are much appreciated.
Greg Fabella wrote much of the multiprocessing contr ol code and ran experiments
on the SUN hardware.

Data Structure s for Page Reade rs

www.manaraa.com

12. References

[1] H. S. Baird, Global- to-Local Layout Anal ysis , in R. Mohr , T. Pavlidis, & A. San-
feliu (Eds.), Stru ctur al Pattern Analysis, World Scientif ic, Singapore, 1990, pp.
181-196.

[2] H. S. Baird, S. E. Jones and S. J. Fortune, Image Segmentation by Shape-
Dire cted Cover s, Proc., IAPR 10th Int’l Conf. on Pattern Recognition, Atlantic
City, NJ, 17-21 June, 1990, vol 1, pp. 820-825.

[3] H. S. Baird and R. Fossey, A 100-Font Clas sif ier , Proc., 1st Int’l Conf. on Docu-
ment Analysis and Recognition (ICDA R’91), Saint-M alo, France, 30 September
- 2 October, 1991, pp. 332-340.

[4] H. S. Baird, Backgroun d Structur e in Documen t Images , in H, Bunke (Ed.),
Advances in Stru ctur al and Syntactic Pattern Recognition, World Scientif ic,
Singapore, 1992, pp. 253-269.

[5] D. J. Ittner, Automatic Infe re nce of Textlin e Orie ntation, 2nd Annual Sympo-
sium on Document Analysis and Inf ormation Retrieval, Las Vegas, Nevada,
April, 1993.

[6] H. S. Baird, Anatomy of a Ver satil e Page Read er, IEEE Proceedings, July,
1992.

[7] D. J. Ittner and H. S. Baird, Language- Free Layout Anal ysis , Proceedings, 2nd
Int’l Conf. on Document Analysis and Recognition, Tsukuba Scienc e City,
Japan, October 20-22, 1993, pp. 336-340.

[8] A. Dengel, ANASTASIL: A System for Low-Level and Hi gh-Le vel Geometr ic
Analys is of Printe d Documents , in H. Baird, H. Bunke, & K. Yamamoto (Eds.),
Struc tural Document Image Analysis, Sprin ger-V erlag, New York, 1992, pp.
70-98.

[9] J. Kreich, A. Luhn, & G. Maderlechn er, An Exper imental Envir onment for
Model -Bas ed Documen t Anal ysis , Proc., 1st Int’l Conf. on Document Analysis
and Recognition, Saint-M alo, France, September 30-October 2, 1991, pp. 50-58.

[10] Y. Chenevoy & A. Belaid, Hypothesi s Manage ment for Structur ed Docume nt
Rec ognition , Proc., 1st Int’l Conf. on Document Analysis and Recognition
(ICDAR’91), St.-Malo, France, 30 September - 2 October, 1991, pp. 121-129.

[11] D. L. Parnas, On the Cri teri a to Be Use d in Dec omposing Systems into Modul es ,
in E. N. Your dan (Ed.), Classics in Software Engineerin g, Your dan Press, New
York, 1979, pp. 141-150.

[12] I. T. Phillip, S. Chen, J. Ha, and R. M. Haralick, Engli sh Docume nt Database
Desi gn and Imple mentation Me thodology, Proceedings, 2nd Annual Symposium
on Document Analysis and Infor mation Retrieval, Caesar’s Palace Hotel, Las
Vegas, Nevada, April 26-28, 1993, pp. 65-104.

[13] The Unic ode Consortium, The Unicode Standard, Vols 1 & 2, Addison-Wesley, Read-
ing, Massac husetts, 1992.

H.S. Bair d and D.J. Ittner

